If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x-5=1/6x+4
We move all terms to the left:
1/3x-5-(1/6x+4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x+4)!=0We get rid of parentheses
x∈R
1/3x-1/6x-4-5=0
We calculate fractions
6x/18x^2+(-3x)/18x^2-4-5=0
We add all the numbers together, and all the variables
6x/18x^2+(-3x)/18x^2-9=0
We multiply all the terms by the denominator
6x+(-3x)-9*18x^2=0
Wy multiply elements
-162x^2+6x+(-3x)=0
We get rid of parentheses
-162x^2+6x-3x=0
We add all the numbers together, and all the variables
-162x^2+3x=0
a = -162; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-162)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-162}=\frac{-6}{-324} =1/54 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-162}=\frac{0}{-324} =0 $
| 6x+12=18x | | -3(x-1)=2(x+1) | | 1/2x+1/2x=16 | | 24=4n+2n | | 17x=10x^+3 | | 1+2r+6r=17 | | 5n-8=3(n+2) | | -5(-8n+4)=18+2n | | 3=-x+2x | | 17x=10x*x+3 | | -2n+-6+-4=8 | | −5(x+2)+2x+5=-2−2 | | -24=7p+5p | | 3n-21=6(-6n+3) | | 9=-4p+p | | 1-k=6k+8 | | 45-4w=w | | 17x=10x+3 | | p-19=-35 | | 75x+25=42x+36 | | 7(a-8)=3(a+4) | | -14+6n-14-18=-4 | | -26=p-17 | | 24+5v=11v | | 3=3+n | | 3x-7+2x=4+5x-11 | | 5(-2x+5)+x-5=-48 | | 13+v=14 | | 3p+6=57 | | 1-2m=-6m-3 | | 8x+14∘=6x+34∘ | | w÷(-4)=-0.9 |