1/3x-5+2/3x=7/6x+4

Simple and best practice solution for 1/3x-5+2/3x=7/6x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-5+2/3x=7/6x+4 equation:



1/3x-5+2/3x=7/6x+4
We move all terms to the left:
1/3x-5+2/3x-(7/6x+4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x+4)!=0
x∈R
We get rid of parentheses
1/3x+2/3x-7/6x-4-5=0
We calculate fractions
(12x+1)/18x^2+(-21x)/18x^2-4-5=0
We add all the numbers together, and all the variables
(12x+1)/18x^2+(-21x)/18x^2-9=0
We multiply all the terms by the denominator
(12x+1)+(-21x)-9*18x^2=0
Wy multiply elements
-162x^2+(12x+1)+(-21x)=0
We get rid of parentheses
-162x^2+12x-21x+1=0
We add all the numbers together, and all the variables
-162x^2-9x+1=0
a = -162; b = -9; c = +1;
Δ = b2-4ac
Δ = -92-4·(-162)·1
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-27}{2*-162}=\frac{-18}{-324} =1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+27}{2*-162}=\frac{36}{-324} =-1/9 $

See similar equations:

| -5y-9=- | | 2x+4+4x-6=180 | | x2-40x+204=0 | | 4/x-1+x=11 | | x+2/4-x-1/3=2 | | 0.4(3z+5)+2.8=0.7(3z-6) | | k-10÷2=-7 | | (11y-6)^2+121=0 | | 4x+15+2x+45=90 | | 89x+10=99x | | 6x-6=-36 | | x+11=14+4x | | 5(u+3)=3u+27 | | 4x+15+2x+45=180 | | 174(x)=112(x) | | 1x+9=90 | | 11=a-5.4 | | 0=5x^2-116 | | 1/4=p+9/16 | | 174x=112x | | 4x-12=-3 | | -23+z=-28 | | (w)/(12)-3(12)=53 | | 5(1/5n)=7n-18 | | 9(x^2+16)=8x | | m+(-2)=-12 | | 8(r-2)=-15(12+r) | | -20+r=9 | | y-29=-2 | | 5(2+3X)=3-2x | | 3(n-5)=8 | | 13x+4=18-2x |

Equations solver categories