1/3x-4=1/8x+6

Simple and best practice solution for 1/3x-4=1/8x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-4=1/8x+6 equation:



1/3x-4=1/8x+6
We move all terms to the left:
1/3x-4-(1/8x+6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 8x+6)!=0
x∈R
We get rid of parentheses
1/3x-1/8x-6-4=0
We calculate fractions
8x/24x^2+(-3x)/24x^2-6-4=0
We add all the numbers together, and all the variables
8x/24x^2+(-3x)/24x^2-10=0
We multiply all the terms by the denominator
8x+(-3x)-10*24x^2=0
Wy multiply elements
-240x^2+8x+(-3x)=0
We get rid of parentheses
-240x^2+8x-3x=0
We add all the numbers together, and all the variables
-240x^2+5x=0
a = -240; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-240)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-240}=\frac{-10}{-480} =1/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-240}=\frac{0}{-480} =0 $

See similar equations:

| 3=5(5-2x)+8 | | X^2-2x=16-1 | | Y+x+36=49 | | Y/2-10=2y | | A(a+4)=74 | | -12=2(x-10) | | x6−625x2=0 | | 7+4x=x+30 | | 11x-21=13 | | 5x+1/8-5x+2/2=1/6 | | Y=1-2x;x=9 | | 44s^2+7s–1=0 | | 7z+9=-75 | | y11 = -19 | | 3(2x-1)+5=4x+12 | | 2a+7a=25 | | 79=261-w | | 2(3x+4)-5x=7x-6 | | 52/k-4=37 | | 35/9y^2+14y-4=0 | | 1/2(x-7)=-8 | | 2x+6-3=-3+8x | | (33-x)/4=15-x | | (33-x)/4=x-15 | | z/8+4=1 | | 302-x=21 | | 3x-43=2x11 | | 7-7y=42 | | 6^3n-6=-40 | | a÷6+7=12 | | 6(2x-1=10x | | 4y+13=15 |

Equations solver categories