1/3x-20=180-x

Simple and best practice solution for 1/3x-20=180-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-20=180-x equation:



1/3x-20=180-x
We move all terms to the left:
1/3x-20-(180-x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(-1x+180)-20=0
We get rid of parentheses
1/3x+1x-180-20=0
We multiply all the terms by the denominator
1x*3x-180*3x-20*3x+1=0
Wy multiply elements
3x^2-540x-60x+1=0
We add all the numbers together, and all the variables
3x^2-600x+1=0
a = 3; b = -600; c = +1;
Δ = b2-4ac
Δ = -6002-4·3·1
Δ = 359988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{359988}=\sqrt{4*89997}=\sqrt{4}*\sqrt{89997}=2\sqrt{89997}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-2\sqrt{89997}}{2*3}=\frac{600-2\sqrt{89997}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+2\sqrt{89997}}{2*3}=\frac{600+2\sqrt{89997}}{6} $

See similar equations:

| 6-3(4x-8)=34 | | 31=d+(–1.4) | | 30=8(-1-6x)-2(7+2x) | | 31=d+(–1.4 | | -22=-2d | | 30+k=36 | | 7x-2(5x-16)=71 | | 40x-15=65 | | –55.04+b+39.68=–71.03 | | 18=2n | | (2x+7)+11=3 | | -8x-10=-34 | | 3(5-x)+2=29 | | -2b=-56 | | 7(2k-4)-(3k+1)=49 | | 10p=-50 | | 16t^2-305=0 | | 8(y+4)=64 | | 5^4/3=x | | -x=3x+24 | | 3x+3=174 | | 15x+23=53 | | c-11=-8 | | -12x+19=-4(3x-4) | | 2/3(x-5)=2/3(x+1) | | -7f=42 | | 7y+10=3y+10 | | 99=5v+9 | | f−59=15 | | 4=12p-16-10p | | 5(x-2)=1/3x | | 5x-2=13(x-3) |

Equations solver categories