1/3x-2/5=3/5x+2

Simple and best practice solution for 1/3x-2/5=3/5x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-2/5=3/5x+2 equation:



1/3x-2/5=3/5x+2
We move all terms to the left:
1/3x-2/5-(3/5x+2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+2)!=0
x∈R
We get rid of parentheses
1/3x-3/5x-2-2/5=0
We calculate fractions
125x/375x^2+(-9x)/375x^2+(-6x)/375x^2-2=0
We multiply all the terms by the denominator
125x+(-9x)+(-6x)-2*375x^2=0
Wy multiply elements
-750x^2+125x+(-9x)+(-6x)=0
We get rid of parentheses
-750x^2+125x-9x-6x=0
We add all the numbers together, and all the variables
-750x^2+110x=0
a = -750; b = 110; c = 0;
Δ = b2-4ac
Δ = 1102-4·(-750)·0
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12100}=110$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-110}{2*-750}=\frac{-220}{-1500} =11/75 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+110}{2*-750}=\frac{0}{-1500} =0 $

See similar equations:

| -2(1-7n)-9n=34 | | 2x/4=5x+8/4 | | 2(3x+1)+2(x-2)=14 | | 6n–42=12 | | -13x+11=22 | | 4(y-4)-7y=-37 | | C=4500+225n | | 6/1.8=1.8/x | | -32.56=-4.4x | | 24=x6 | | 7/3(x)-2=-37 | | 7+3x-2=32 | | 2.5b+15=3b-9 | | 10x+9-6=-19 | | 7x+21=-56 | | .75(x+20)=2+ | | 1/4(n)=12 | | +7x-6+90=180 | | 10=-1-c | | 24=x·6 | | 4-7(2n-8)=30-(-16) | | 9n+5n=1 | | 7x-9=51 | | 11n-20+6n=17-54 | | 2x-4=4(.25x+1) | | -11+10(p+10)=4–5(2*p+11) | | 0.95=p+2.35 | | 21/2x=9/6 | | 4(2x-1)+2=38 | | 6x+8+2x-4=124 | | .75q-6q=3 | | 1.1n-2+.6n=1.7-5.4 |

Equations solver categories