1/3x-1/2=1/5x+5

Simple and best practice solution for 1/3x-1/2=1/5x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-1/2=1/5x+5 equation:



1/3x-1/2=1/5x+5
We move all terms to the left:
1/3x-1/2-(1/5x+5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+5)!=0
x∈R
We get rid of parentheses
1/3x-1/5x-5-1/2=0
We calculate fractions
(-75x^2)/60x^2+20x/60x^2+(-12x)/60x^2-5=0
We multiply all the terms by the denominator
(-75x^2)+20x+(-12x)-5*60x^2=0
Wy multiply elements
(-75x^2)-300x^2+20x+(-12x)=0
We get rid of parentheses
-75x^2-300x^2+20x-12x=0
We add all the numbers together, and all the variables
-375x^2+8x=0
a = -375; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·(-375)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*-375}=\frac{-16}{-750} =8/375 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*-375}=\frac{0}{-750} =0 $

See similar equations:

| 78=(1/2)h(6+7) | | A=(1/2)h(6+7) | | (5x+36)°+(3x)=180 | | 1.2x=3x-16/5 | | 440=82+.2x | | 6x+3-10x-7x=7x-8-7x | | x+7/3-x+7/30=-3 | | 216^{x-2}=36^{3x-3} | | 7^2-3x-18=0 | | 8^2+19x+6=0 | | 20=3.5x | | 6x-2+128=180 | | 0.3x−7=23 | | 7k−k+19= | | C(x)=200+160x | | -27=−2+5b | | 4^q=1/2 | | (1+r)^5=1,6105 | | 2x+4=3×2 | | 180=(y^2-5)+(-8y+165) | | 180=(y^2-5)+(-8y+165 | | 4n2–20n–11=0 | | 0.2x=-13(x+330) | | x^2+8x+16=144+x^2 | | 5=x−12 | | 4+2a=6+3a | | -2•14=32+-2h | | 14=32+-2h | | 14=-14+h | | -15+(-4m)=5 | | -15=(-4m)=5 | | 9x^2-34x+34=0 |

Equations solver categories