If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+40+(x-20)+(x-10)=360
We move all terms to the left:
1/3x+40+(x-20)+(x-10)-(360)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/3x+(x-20)+(x-10)-320=0
We get rid of parentheses
1/3x+x+x-20-10-320=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-30x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $
| 10+9u=7u | | 42=y/15+15 | | 12+7r=-2r+3r | | x-7x=-6+9x | | 5a+3-3a=-10 | | 9w-15w=36 | | 13=+2a=(a+2) | | 47=2u+9 | | G(x)=-4-3x/2 | | -28=3m=-43 | | 3x4–x2–2=0 | | 4x-40=7(=2x+2) | | -10-7c=-9c | | 5r+9=7r-7 | | -1(x+20)=-4x+3x20 | | 3x×x+10x+7=0 | | 0=2m-4m | | 4m+2m=3m+12 | | |4x-1|=2x+6 | | 2x-1=8x+44 | | -6a-a=-7 | | 2s^2-16s-168=0 | | 12+6b=2(3b-4) | | Y=2x2+8 | | 7x=+5-8-3x | | 4+4r-4=4 | | -2(u+4)=-5u-38 | | 12x+25*3x-10=180 | | -9+7n=6n−2 | | -6j-10=-3j+8-6j | | -2p=5+3p | | -15+5x=12 |