1/3x+3/7x=34/88

Simple and best practice solution for 1/3x+3/7x=34/88 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+3/7x=34/88 equation:



1/3x+3/7x=34/88
We move all terms to the left:
1/3x+3/7x-(34/88)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x+3/7x-(+34/88)=0
We get rid of parentheses
1/3x+3/7x-34/88=0
We calculate fractions
(-4998x^2)/14784x^2+4928x/14784x^2+6336x/14784x^2=0
We multiply all the terms by the denominator
(-4998x^2)+4928x+6336x=0
We add all the numbers together, and all the variables
(-4998x^2)+11264x=0
We get rid of parentheses
-4998x^2+11264x=0
a = -4998; b = 11264; c = 0;
Δ = b2-4ac
Δ = 112642-4·(-4998)·0
Δ = 126877696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{126877696}=11264$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11264)-11264}{2*-4998}=\frac{-22528}{-9996} =2+634/2499 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11264)+11264}{2*-4998}=\frac{0}{-9996} =0 $

See similar equations:

| A-5=5/6a-2 | | 2.98=0.85b | | 14+9=x+17 | | b=0.85*2.89 | | 8=(6n+1) | | 2/3a=a-17 | | F(3)=9x-11 | | 1.5x^2+3x-13.5=0 | | 80-2x=64 | | F(12)=16-2x | | 1/3n+4=3 | | 4x+25=72 | | F(x)=16-2x | | 4x+24=71 | | 3x+43=-7 | | 7g-4=5g+3 | | -x²+25x-144=0 | | 45-5y=15 | | x-8=-12+17 | | 45y-5y=15 | | 9(2x+7)=0.5(32x+6) | | 5x-2x+11=59 | | -6x+6-13+x=88 | | 30+4x=24 | | 5-(5-3x)+2=13 | | 9-2x-4+6=23 | | 2-2x2-3=0 | | 2x-2x2-3=0 | | 8x-30+2x=60 | | 2x−x2-3=0 | | 3h/2=20 | | -3g=15-9 |

Equations solver categories