1/3x+1=5/6x-3

Simple and best practice solution for 1/3x+1=5/6x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+1=5/6x-3 equation:



1/3x+1=5/6x-3
We move all terms to the left:
1/3x+1-(5/6x-3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-3)!=0
x∈R
We get rid of parentheses
1/3x-5/6x+3+1=0
We calculate fractions
6x/18x^2+(-15x)/18x^2+3+1=0
We add all the numbers together, and all the variables
6x/18x^2+(-15x)/18x^2+4=0
We multiply all the terms by the denominator
6x+(-15x)+4*18x^2=0
Wy multiply elements
72x^2+6x+(-15x)=0
We get rid of parentheses
72x^2+6x-15x=0
We add all the numbers together, and all the variables
72x^2-9x=0
a = 72; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·72·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*72}=\frac{0}{144} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*72}=\frac{18}{144} =1/8 $

See similar equations:

| 4=2m−2 | | (-5+3j)(5)= | | 13=1/3y=5 | | 8​​11​​=​4​​k​​ | | Y=83y+2y-y | | 1/3(d-3)=-15 | | 7x-8=8x-2x | | 9x^2+0x+25=0 | | -16(x+1)+5(4x-5)=3(x-6)+12 | | x+4x-x/4=38 | | 22m=110 | | 2-3x=2(x+6) | | 0.4t+19.6=10.4 | | 2+(2v+7)=42 | | 174=81-x | | 0.3+1.2=0.6x | | 144x^2+4x-3=0 | | 5-(3x-8)=10 | | 5a17=47 | | 4x^2+x/9-1/12=0 | | 0.6x+1.2=-2.1(-0.9x)-2.1 | | 7a/8=5 | | 2/7x-11/20=-5/7x-4/5 | | t-80=-44 | | 9(s−1)=27 | | 2/5x-11/20=-5/7x-4/5 | | -6+4z+8=3+5z | | u=-7^2 | | 1/4+f=5 | | 259=8-u | | 6(y)+4=4 | | (7+x)/4=30 |

Equations solver categories