1/3x+12=7/9x

Simple and best practice solution for 1/3x+12=7/9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+12=7/9x equation:



1/3x+12=7/9x
We move all terms to the left:
1/3x+12-(7/9x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(+7/9x)+12=0
We get rid of parentheses
1/3x-7/9x+12=0
We calculate fractions
9x/27x^2+(-21x)/27x^2+12=0
We multiply all the terms by the denominator
9x+(-21x)+12*27x^2=0
Wy multiply elements
324x^2+9x+(-21x)=0
We get rid of parentheses
324x^2+9x-21x=0
We add all the numbers together, and all the variables
324x^2-12x=0
a = 324; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·324·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*324}=\frac{0}{648} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*324}=\frac{24}{648} =1/27 $

See similar equations:

| 10(3a+4)=55 | | 4x-1=2x+29 | | 8x=6x-20;=-10 | | 3.25x=-0.75 | | 21(2-8)21x=44 | | 1/2x+200=7/10x | | 4X-18=7-x | | kx^2+2x-1=0 | | -8(4x+8)=48 | | 4=(6v) | | 0=15y^2-2y-1 | | 3/8x+6=3/4x | | 4x-1=35+x | | 1/2w-2/3=-2/7 | | (6×12)+y=75 | | 5(x+1)+4=3x+2(5+x) | | -75-x=25 | | -7(4x-9)+4=-28x+67 | | -9+y=-6 | | -16y=-893 | | 3x+18-19x+2=-20x-30 | | 1/2x+3=1/2x+3 | | y/4+16=44 | | 8(5-z)=-z | | 2.1x+1.1=7.4 | | b*(b^2+b-2)=0 | | 2.5*0.4x=10*2.5 | | 8(x-18)=5x | | 5(y+7)+y=2(y+2)-5 | | 20(-5x+3)+7=-3(-8x-4)+8 | | -5+6=-12x+62 | | -2(4x+5)=-10 |

Equations solver categories