1/3x+12=36-2x

Simple and best practice solution for 1/3x+12=36-2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+12=36-2x equation:



1/3x+12=36-2x
We move all terms to the left:
1/3x+12-(36-2x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(-2x+36)+12=0
We get rid of parentheses
1/3x+2x-36+12=0
We multiply all the terms by the denominator
2x*3x-36*3x+12*3x+1=0
Wy multiply elements
6x^2-108x+36x+1=0
We add all the numbers together, and all the variables
6x^2-72x+1=0
a = 6; b = -72; c = +1;
Δ = b2-4ac
Δ = -722-4·6·1
Δ = 5160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5160}=\sqrt{4*1290}=\sqrt{4}*\sqrt{1290}=2\sqrt{1290}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-2\sqrt{1290}}{2*6}=\frac{72-2\sqrt{1290}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+2\sqrt{1290}}{2*6}=\frac{72+2\sqrt{1290}}{12} $

See similar equations:

| 140-20x=0 | | 2x+1+39=3×+13 | | 4(x-3)-9x=2-(x+6) | | 16x^2-48x+36=20 | | 5k–2=43 | | 2/10x-3=13/10x-14/10 | | a÷8–3=9 | | 4y+6(y+8)=8 | | -x^2+2x(3x-4)=7+12x+5x^2-2(3x+4) | | 51=-6s+4 | | 7y-3=15y+29 | | 8+32=-4(7x-10) | | 8x+3=x+10 | | 7x+30=4x+15 | | 51=-7s+4 | | 14=7d | | 3t-21=-9 | | -5k-4=-24 | | 2x(7+9)=89 | | 4X-5=28x-13 | | 3-1x+4=4x | | 4y-9-7=0 | | 5x+8+7x-3=180 | | (-3b-8)-(8b+1)=-18b+47 | | 2/3x=10.4 | | 5/6x+4=1/6x+8 | | 8-5(2-x)=5 | | -3z+2(-5z-1)=115 | | x+x+1/2x+1/4x+2=200 | | (3x-10)=60 | | 2.15x=35.7 | | 3/8=x-11/3 |

Equations solver categories