1/3x+12=180-x

Simple and best practice solution for 1/3x+12=180-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+12=180-x equation:



1/3x+12=180-x
We move all terms to the left:
1/3x+12-(180-x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(-1x+180)+12=0
We get rid of parentheses
1/3x+1x-180+12=0
We multiply all the terms by the denominator
1x*3x-180*3x+12*3x+1=0
Wy multiply elements
3x^2-540x+36x+1=0
We add all the numbers together, and all the variables
3x^2-504x+1=0
a = 3; b = -504; c = +1;
Δ = b2-4ac
Δ = -5042-4·3·1
Δ = 254004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{254004}=\sqrt{4*63501}=\sqrt{4}*\sqrt{63501}=2\sqrt{63501}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-504)-2\sqrt{63501}}{2*3}=\frac{504-2\sqrt{63501}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-504)+2\sqrt{63501}}{2*3}=\frac{504+2\sqrt{63501}}{6} $

See similar equations:

| -4(10+7x)=-292 | | -17y+15y^2+4=3y-1 | | 3-3y+6y=12 | | 9+4x=-10x | | 2(5^p)=250 | | -3(6+4x)=-54 | | 5x2-6x-5=0 | | 40=2x+2*x | | u-4.46=5.94 | | X^2+2x+8=40 | | 4(x-9)=-9 | | -3(7+6x)=50 | | (6x-5)+5x+75=180 | | 15=-3(w-1)+9 | | 4x-7x-14=-3x+9-14 | | u-4.7=6.3 | | 2q^2-139+20=0 | | (4+7x)+53+39=180 | | 2(3x+7=81 | | 10x+20=540 | | m3+5=8 | | 10w^2+19w-15=0 | | 2x²-30x+108=0 | | (5x-18)4=-36 | | 6x+4-2x=-8 | | m3+ 5=8 | | d−9=67 | | -7y=18-5y | | w+4/5=81/3 | | 3d^2-4d=0 | | 5(m-4)=25 | | 44+s+655=180 |

Equations solver categories