If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+12-29x=57x+208-5x+38
We move all terms to the left:
1/3x+12-29x-(57x+208-5x+38)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/3x-29x-(52x+246)+12=0
We add all the numbers together, and all the variables
-29x+1/3x-(52x+246)+12=0
We get rid of parentheses
-29x+1/3x-52x-246+12=0
We multiply all the terms by the denominator
-29x*3x-52x*3x-246*3x+12*3x+1=0
Wy multiply elements
-87x^2-156x^2-738x+36x+1=0
We add all the numbers together, and all the variables
-243x^2-702x+1=0
a = -243; b = -702; c = +1;
Δ = b2-4ac
Δ = -7022-4·(-243)·1
Δ = 493776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{493776}=\sqrt{1296*381}=\sqrt{1296}*\sqrt{381}=36\sqrt{381}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-702)-36\sqrt{381}}{2*-243}=\frac{702-36\sqrt{381}}{-486} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-702)+36\sqrt{381}}{2*-243}=\frac{702+36\sqrt{381}}{-486} $
| x=6.3+5.6+8.4 | | 3x-20=x+62 | | x=180-77-31 | | (4x)-(2)=14 | | 6.3*5.6*8.4*x=27.4 | | 3x-20=500 | | 19^x-7=41 | | 8x-1/12x+3=4/9 | | 4(x-3)+12+2x=6 | | 7x-4=77 | | 8+4m=-m+3 | | -3x+1+6x+8=15 | | 6v+1=7-7v | | -12-6=10x+6 | | 4(x-4)-4=-5(-4x+3)-6x | | 0.25÷0.20=x | | 4{2t+5}-21=7t-6 | | 5a-16=7a-6 | | 14u−8=34 | | x-26=35 | | 395=24n+5 | | (6/3)-y=1.4 | | 3(x-4)^(2)=-27 | | 9(-q+2)=-3q | | m+250/12=31 | | Y=-1/2(x+4) | | 8-5x(x-4)=2x-6 | | (5)/(x+2)=(3)/(x-1) | | x+0.2x=0.2x2 | | 900t+40=750t+90 | | (9x+3)=(6x-18) | | 20-15=x |