1/3x+1/6=7/9x

Simple and best practice solution for 1/3x+1/6=7/9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+1/6=7/9x equation:



1/3x+1/6=7/9x
We move all terms to the left:
1/3x+1/6-(7/9x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(+7/9x)+1/6=0
We get rid of parentheses
1/3x-7/9x+1/6=0
We calculate fractions
243x^2/972x^2+324x/972x^2+(-756x)/972x^2=0
We multiply all the terms by the denominator
243x^2+324x+(-756x)=0
We get rid of parentheses
243x^2+324x-756x=0
We add all the numbers together, and all the variables
243x^2-432x=0
a = 243; b = -432; c = 0;
Δ = b2-4ac
Δ = -4322-4·243·0
Δ = 186624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{186624}=432$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-432)-432}{2*243}=\frac{0}{486} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-432)+432}{2*243}=\frac{864}{486} =1+7/9 $

See similar equations:

| 34x+5)=10x+29 | | -1/2v-6/5=3/2v+5 | | 5/4x+41/5=-x+1 | | y+7/7=2/3 | | 25y-1=-5y-12 | | 778000x=x^2 | | 23=x/4+17 | | 2x+4/x+7=4x+7/7x-5 | | 13x=5×+24 | | 2x+6x+28=2 | | 23=x/4-17 | | 8x=288-12x | | 2(2x-4)=7-3x | | 778x=x2 | | -2u-38=7(u+1) | | 12/48=4/x | | 25/xx=49 | | 2x+5=-1.5x+6.5 | | -6=3z | | 5y+5y=100 | | 2x5=-1.5x6.5 | | 3x-5/7=0 | | 2(x-4.80)=10.00 | | 4=8v | | 1152=24(p+15) | | 2(x-$4.80)=$10.00 | | 4/0.4=4.2/x | | 5(h-7)=-10 | | -19=-2/3x | | (1/3)x=(2/15)x+(2/5) | | -2(1-x^2)=x^2 | | -2(1-2x^2)=x^2 |

Equations solver categories