1/3x+-5=-3+1/6x

Simple and best practice solution for 1/3x+-5=-3+1/6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+-5=-3+1/6x equation:



1/3x+-5=-3+1/6x
We move all terms to the left:
1/3x+-5-(-3+1/6x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(1/6x-3)-5+=0
We add all the numbers together, and all the variables
1/3x-(1/6x-3)=0
We get rid of parentheses
1/3x-1/6x+3=0
We calculate fractions
6x/18x^2+(-3x)/18x^2+3=0
We multiply all the terms by the denominator
6x+(-3x)+3*18x^2=0
Wy multiply elements
54x^2+6x+(-3x)=0
We get rid of parentheses
54x^2+6x-3x=0
We add all the numbers together, and all the variables
54x^2+3x=0
a = 54; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·54·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*54}=\frac{-6}{108} =-1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*54}=\frac{0}{108} =0 $

See similar equations:

| 70-x+x=580 | | 8p-7(p-3)=16 | | 7x+42=20+9x | | x^2-25/x^2+x-30=5 | | 6-(4-3x)-8=x | | (1/4x-3)=10 | | x/23=-45+11 | | 8(2f-2)=3(3f+2) | | |x+1|+|3x|=3 | | 1/2x+2/3=1/4(x+3) | | 4(x+5)-3x=-7x | | (x+2)^2=32 | | 2/5x+21=–1/5(8x–25)–2x | | 7/2=t+5/10 | | 5(z+9)=9+2z | | -20+7=y | | 1/2y=2(y-3) | | 25x+21=–15(8x–25)–2x | | 5y2=26y+5 | | -3-2x=10x+1 | | 5x+1=8x-2/ | | 2(x+3)^2-5=12 | | -2z+4=-4z | | 5x-3=27×+1 | | -48+x=-38 | | -2z+4=4z | | −7x=25−2x | | 35x=39 | | 15w-17w=14 | | 3/12=x | | -7x^2+21x+126=0 | | −7w=25−2w |

Equations solver categories