If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+(x-20)+(x-10)+40=180
We move all terms to the left:
1/3x+(x-20)+(x-10)+40-(180)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/3x+(x-20)+(x-10)-140=0
We get rid of parentheses
1/3x+x+x-20-10-140=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x-140*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-30x-420x+1=0
We add all the numbers together, and all the variables
6x^2-510x+1=0
a = 6; b = -510; c = +1;
Δ = b2-4ac
Δ = -5102-4·6·1
Δ = 260076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260076}=\sqrt{4*65019}=\sqrt{4}*\sqrt{65019}=2\sqrt{65019}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-510)-2\sqrt{65019}}{2*6}=\frac{510-2\sqrt{65019}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-510)+2\sqrt{65019}}{2*6}=\frac{510+2\sqrt{65019}}{12} $
| 39.09+0.25x=120 | | 7y-22=-37+3y | | 7(x+2)=5(×+4) | | 36=4rr= | | 9x+72°=4x+112° | | 4k+9=12 | | 6x+1=6x+17+54=180 | | 9+(-2+m)=(-2+m)+9 | | -3/5x-15=6/5x+12 | | 4y+36=180 | | 120=39.09+0.25x | | 7(x+1)=77 | | 8+2(-x-5)=26 | | 4y+16=40 | | 6x+1=5x+17 | | 11y-36=68 | | 5n+2n-12=23 | | w/3+3=-8 | | -6=1/4w-1/2w | | -8−3b=-5b | | 3(y-4)+2=3y-10 | | -6.5x=46.8 | | (3x+3)=(2x+9) | | 6x+1=5x+17+54 | | (n)+(n-100)=192 | | 5x+45=-90 | | -12q=5-11q | | 6x+18=0.25x+12 | | 6+m=-5m+30 | | -7v-20+6v=20+v | | 2=7.5x | | 8n+2=-10+10n |