1/3x+(12-x)=38

Simple and best practice solution for 1/3x+(12-x)=38 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+(12-x)=38 equation:



1/3x+(12-x)=38
We move all terms to the left:
1/3x+(12-x)-(38)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x+(-1x+12)-38=0
We get rid of parentheses
1/3x-1x+12-38=0
We multiply all the terms by the denominator
-1x*3x+12*3x-38*3x+1=0
Wy multiply elements
-3x^2+36x-114x+1=0
We add all the numbers together, and all the variables
-3x^2-78x+1=0
a = -3; b = -78; c = +1;
Δ = b2-4ac
Δ = -782-4·(-3)·1
Δ = 6096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6096}=\sqrt{16*381}=\sqrt{16}*\sqrt{381}=4\sqrt{381}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-4\sqrt{381}}{2*-3}=\frac{78-4\sqrt{381}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+4\sqrt{381}}{2*-3}=\frac{78+4\sqrt{381}}{-6} $

See similar equations:

| 6=13+-2y | | 47=28-6(4-3w) | | 3(4+4n)=12+6n | | 6068/x=232/1200 | | -8(x+3)=12(x+5) | | 8/5x+4/5=6 | | 4(2y-3)=-17 | | x^2−5x−14=0 | | 7x-6-3x=-6 | | 3(y-1)=-13 | | 8x/5-x/4=-4 | | x+1+4x-56=180° | | |3x-11|=|x+9| | | 0.67+0.23t=1.55t-1.09 | | 15x+12x-19=5x-37 | | ​3/8c−2=​3/2c−12 | | x-(3/5)=7/10 | | 3(3x+7)=4-8(4+5x) | | 7/6x-6/3=-3 | | 6/v=4=8/4 | | -16x^2+64x=2 | | 44x-44=-11+33x | | ​3/8​​c−2=​3/2c−12 | | x2-10x=119 | | -4x+84=8x | | -21=-7-7(2+8n) | | 4x/3-x=x/15-12/15 | | 1/2x(3x+x)=70 | | 45-6x=10x-7 | | 2÷5x-1÷5x=9 | | 8x-6x+9=6x-x | | 5/2x-1/2=6 |

Equations solver categories