1/3t=t+-154

Simple and best practice solution for 1/3t=t+-154 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3t=t+-154 equation:



1/3t=t+-154
We move all terms to the left:
1/3t-(t+-154)=0
Domain of the equation: 3t!=0
t!=0/3
t!=0
t∈R
We add all the numbers together, and all the variables
1/3t-(t-154)=0
We get rid of parentheses
1/3t-t+154=0
We multiply all the terms by the denominator
-t*3t+154*3t+1=0
Wy multiply elements
-3t^2+462t+1=0
a = -3; b = 462; c = +1;
Δ = b2-4ac
Δ = 4622-4·(-3)·1
Δ = 213456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{213456}=\sqrt{16*13341}=\sqrt{16}*\sqrt{13341}=4\sqrt{13341}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(462)-4\sqrt{13341}}{2*-3}=\frac{-462-4\sqrt{13341}}{-6} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(462)+4\sqrt{13341}}{2*-3}=\frac{-462+4\sqrt{13341}}{-6} $

See similar equations:

| 7+-5=9n+32 | | -15x+120=85(x+76) | | -1/2(8x/20)-9x=81 | | 6y-2=8y+22 | | 5h^2+7h-8=0 | | 25+3w+4w+2+2w=9(w+3) | | 13+5x=73 | | 0.8x+-4=-7/13+-8.23 | | (8+3n)=(6) | | 630(h-40)=960 | | 4m^2-21m+10=-5m^2 | | 0=(-5v)-8v | | 76=14x-8 | | (6x+30)=(5x-15) | | (1+c)+(3+c)=2+c | | -4x+8=12x+26 | | 7+7n-5=9n+32-7n | | 3(x=1-2x=2 | | y78=5 | | 51-9x=17+8x | | 6y-1=+27-y | | w(5)=75 | | 3x+-25=28 | | -9p,-17=10 | | -6(5-3n)=16-5 | | 99=3(b−36) | | 11+7p=60 | | 7z=15 | | 8•x+3=90 | | 2r^2+7r-1=-3r^2 | | 4b²-36=0 | | -3(4w-6)+4w=4(w+9) |

Equations solver categories