If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3p-9/8p=3
We move all terms to the left:
1/3p-9/8p-(3)=0
Domain of the equation: 3p!=0
p!=0/3
p!=0
p∈R
Domain of the equation: 8p!=0We calculate fractions
p!=0/8
p!=0
p∈R
8p/24p^2+(-27p)/24p^2-3=0
We multiply all the terms by the denominator
8p+(-27p)-3*24p^2=0
Wy multiply elements
-72p^2+8p+(-27p)=0
We get rid of parentheses
-72p^2+8p-27p=0
We add all the numbers together, and all the variables
-72p^2-19p=0
a = -72; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·(-72)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*-72}=\frac{0}{-144} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*-72}=\frac{38}{-144} =-19/72 $
| -10-40-32014-0123-4123-9-1234-9213-5812-598-1458-1024975-97234-32814-231-498123-40981-230984-1203984-123984-1203894-0123984-0123894-012834-018234-0912834-091823-048123-048-1230894-0123894-019823-0481-20385-0128451-84158230-94821-304801-238409-81230-481-23 | | 4x+22*x=x | | 48x=-96 | | x=10x^2-3x-4 | | (v-6)^2=2v^2-7v+42 | | 2y´´-7´+5y=-29 | | v-6^2=2v^2-7v+42 | | 0.12(y-7)+0.18y=0.20y-0.01(10) | | 5=(6x+3-2x)/3 | | 16-x=18 | | 2(3x+1)=4x=2 | | 0.2(n-12)=0.4n | | 16/20y+160/20=35/20+8/20y | | 5/8y-1/3=1/2 | | 4/5y+8/2=7/4+2/5y | | 5+y/3=14 | | 5/3s+7/3=8/5+1/3s | | 4(5x-5)-2(2x-19)=3(5x+1)-1 | | 4+6y-1=5y+6-2y | | 6(p-12)+5(p-13)=6 | | 7(s-2)=7 | | 7.75x+4.5(18-x)=113.5 | | -8(6x-6)+7(7x-7)-8=6-4 | | 7x-2=7(x-1) | | 4x13=7-2x | | 5/a-1=10/2a-1 | | 3(k-5)/4=5+2k/3 | | Y=3x^2+√7x+1 | | 3x/14+1/2-x/7=0 | | Y=3x^2+7x+1 | | 2(w+2)=-2w+28 | | 8t=11t |