If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3p+3/9=11/18p
We move all terms to the left:
1/3p+3/9-(11/18p)=0
Domain of the equation: 3p!=0
p!=0/3
p!=0
p∈R
Domain of the equation: 18p)!=0We add all the numbers together, and all the variables
p!=0/1
p!=0
p∈R
1/3p-(+11/18p)+3/9=0
We get rid of parentheses
1/3p-11/18p+3/9=0
We calculate fractions
162p^2/4374p^2+1458p/4374p^2+(-2673p)/4374p^2=0
We multiply all the terms by the denominator
162p^2+1458p+(-2673p)=0
We get rid of parentheses
162p^2+1458p-2673p=0
We add all the numbers together, and all the variables
162p^2-1215p=0
a = 162; b = -1215; c = 0;
Δ = b2-4ac
Δ = -12152-4·162·0
Δ = 1476225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1476225}=1215$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1215)-1215}{2*162}=\frac{0}{324} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1215)+1215}{2*162}=\frac{2430}{324} =7+1/2 $
| 16-18x=33x-18 | | 6+4x=2(21x+8)-x | | -10z-20=-9z | | 8c-7=2(4c+9) | | 9x+35=8 | | 15x-14x=10 | | 5x+18+4x-9=180 | | F(-2)=-4x^2-7x+12 | | 3k-15=12 | | 149.80=0.07x+1x | | -9-9z=-10z | | 8c+10=98 | | 332=-7(4+6b)-3b | | 2g-g+2=15 | | 3(2x-1)=1-(x-3) | | 3(11x+5)=33x-6 | | 9t-810=18 | | -13.67+14.6q=-0.9q+19.33+18q | | 16v-5v-5v+3=9 | | -13k+20=-15-9k+3 | | -(5m-3)=2(8m+12) | | 4x+12+2x+24=180 | | .3.4=2p | | 3(5+3x)=4 | | (4w+7)(3-w)=0 | | 3/4c+4=12 | | -2w-5=-3w | | -20+13z=14+16z+20 | | 4x+5=x+29 | | 5j+12=-20+3j | | 12p-6p-4p=4 | | 10+-24m+6=6m+4 |