If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3k-1/4k=-3
We move all terms to the left:
1/3k-1/4k-(-3)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 4k!=0We add all the numbers together, and all the variables
k!=0/4
k!=0
k∈R
1/3k-1/4k+3=0
We calculate fractions
4k/12k^2+(-3k)/12k^2+3=0
We multiply all the terms by the denominator
4k+(-3k)+3*12k^2=0
Wy multiply elements
36k^2+4k+(-3k)=0
We get rid of parentheses
36k^2+4k-3k=0
We add all the numbers together, and all the variables
36k^2+k=0
a = 36; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·36·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*36}=\frac{-2}{72} =-1/36 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*36}=\frac{0}{72} =0 $
| -20+1+13j=10j+20 | | r/9-44=-37 | | 2n2-6n+4=0 | | 10v-18=12 | | 18c+8=19+18c+2 | | -39=s/3+-33 | | 7n+1=98-4n | | 3g+6=5g-20 | | 4^x-^2=8^6 | | 4x+72=7x | | 10s-1-18s=-20-7s | | 24=3r/3 | | -3+10b=-163 | | F-12=3f+18 | | 9w+9=-81 | | x^2-10x+20=44 | | 11=n/7 | | 6n-10=8-3n | | X^3-8/2-x=-7 | | 0=4/(x-5) | | 9-8g=5-8g | | 3(x-2)-7(x-1)=13 | | y=17-2y | | z/2+11=14 | | 4w+4=8w-8 | | P=175+11/2t | | -4n-5n+3=6n+4+14 | | 10-j=-j+1 | | 3z^2+1z=6 | | 9g-4=-4+9g | | -5x+4=-X+3 | | X^2+10x=567 |