If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3h-4(2/3h-4)=2/3h-6
We move all terms to the left:
1/3h-4(2/3h-4)-(2/3h-6)=0
Domain of the equation: 3h!=0
h!=0/3
h!=0
h∈R
Domain of the equation: 3h-4)!=0
h∈R
Domain of the equation: 3h-6)!=0We multiply parentheses
h∈R
1/3h-8h-(2/3h-6)+16=0
We get rid of parentheses
1/3h-8h-2/3h+6+16=0
We multiply all the terms by the denominator
-8h*3h+6*3h+16*3h+1-2=0
We add all the numbers together, and all the variables
-8h*3h+6*3h+16*3h-1=0
Wy multiply elements
-24h^2+18h+48h-1=0
We add all the numbers together, and all the variables
-24h^2+66h-1=0
a = -24; b = 66; c = -1;
Δ = b2-4ac
Δ = 662-4·(-24)·(-1)
Δ = 4260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4260}=\sqrt{4*1065}=\sqrt{4}*\sqrt{1065}=2\sqrt{1065}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-2\sqrt{1065}}{2*-24}=\frac{-66-2\sqrt{1065}}{-48} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+2\sqrt{1065}}{2*-24}=\frac{-66+2\sqrt{1065}}{-48} $
| -7n=-6+6n | | (u-9)^2-63=0 | | 21-17=2(x-3) | | 2-6c=-5c | | -20+12v=8v+13+7 | | X+18x+36=180 | | 1-3s=-8 | | 3w-6=6+w | | a+23=-33 | | -5b-20=-1b+20 | | 3x-21+2x=-1 | | w-5-4=6 | | -7f+10=-2f | | 3x+11=2(x-1)=9x+4 | | a+6-6=2 | | 17+14h=-20-20+17h | | -3j-3=-j+9 | | -r+2.9=4.9 | | 20+2x=30-3x | | b/11-5b/11=12/11 | | 6w+-10w+7w=-8 | | 5(x+7)-7=-42 | | 17+14=-20-20+17h | | -8d-8=-9d | | 3(x-6)=4x | | 5/2x-4=(2x-7)/6 | | -5+3t=-14 | | 6n=-10+8n | | -20q-18+12q=6-6q | | |10x-14|=-6 | | 2m-5m=-15 | | 2y+4=120 |