1/3h-4(2/3h-3)=60

Simple and best practice solution for 1/3h-4(2/3h-3)=60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3h-4(2/3h-3)=60 equation:



1/3h-4(2/3h-3)=60
We move all terms to the left:
1/3h-4(2/3h-3)-(60)=0
Domain of the equation: 3h!=0
h!=0/3
h!=0
h∈R
Domain of the equation: 3h-3)!=0
h∈R
We multiply parentheses
1/3h-8h+12-60=0
We multiply all the terms by the denominator
-8h*3h+12*3h-60*3h+1=0
Wy multiply elements
-24h^2+36h-180h+1=0
We add all the numbers together, and all the variables
-24h^2-144h+1=0
a = -24; b = -144; c = +1;
Δ = b2-4ac
Δ = -1442-4·(-24)·1
Δ = 20832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20832}=\sqrt{16*1302}=\sqrt{16}*\sqrt{1302}=4\sqrt{1302}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-4\sqrt{1302}}{2*-24}=\frac{144-4\sqrt{1302}}{-48} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+4\sqrt{1302}}{2*-24}=\frac{144+4\sqrt{1302}}{-48} $

See similar equations:

| 6(t-8)=6 | | (20x^2)-×-30=0 | | B+8)(3b-1)=0 | | -3x+8-4(x-1)=-2x+6-4x+4 | | 11x-40=65+14x | | 3(7-2x=14-8(x-1) | | 11x-40=65=14x | | 63=7(5+b) | | x+0.5x=45.15 | | 3/5x-6=-2/5x-3 | | 3(q+5)=24 | | -3+8-4(x-1)=-(2x-6)-4x+4 | | -17-8x=15-10x | | 11x-66=50+15x | | 36=9(3+s) | | -161-1x=77+6x | | -(-13)=x | | 2x-55=9x+71 | | 51=9+7d | | -8x+(-16x-1)=1+(7x+9) | | -200+13x=64+5x | | -6x-112=7x+122 | | 2(7b-6)=9 | | -8x+16x-1=7x+1 | | 14b-12=9 | | 5w-7=38 | | 3x+5+4x=8x-4 | | -23-c=90 | | 5x-125=x | | g6+19=29 | | (7x+15)+(5x-3)=180 | | -44+6x=-1x+89 |

Equations solver categories