If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3h-4(2/3h-3)=2/3h-66
We move all terms to the left:
1/3h-4(2/3h-3)-(2/3h-66)=0
Domain of the equation: 3h!=0
h!=0/3
h!=0
h∈R
Domain of the equation: 3h-3)!=0
h∈R
Domain of the equation: 3h-66)!=0We multiply parentheses
h∈R
1/3h-8h-(2/3h-66)+12=0
We get rid of parentheses
1/3h-8h-2/3h+66+12=0
We multiply all the terms by the denominator
-8h*3h+66*3h+12*3h+1-2=0
We add all the numbers together, and all the variables
-8h*3h+66*3h+12*3h-1=0
Wy multiply elements
-24h^2+198h+36h-1=0
We add all the numbers together, and all the variables
-24h^2+234h-1=0
a = -24; b = 234; c = -1;
Δ = b2-4ac
Δ = 2342-4·(-24)·(-1)
Δ = 54660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54660}=\sqrt{4*13665}=\sqrt{4}*\sqrt{13665}=2\sqrt{13665}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(234)-2\sqrt{13665}}{2*-24}=\frac{-234-2\sqrt{13665}}{-48} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(234)+2\sqrt{13665}}{2*-24}=\frac{-234+2\sqrt{13665}}{-48} $
| -7z+26=3z+6 | | 6x-4+5x+7=102 | | 6x-14=4x+18 | | 4c+12=16c | | 9x-10x+28(x=23) | | -8=c-20 | | -11(-63r-105)-33=-55(-13r-20)-11 | | (x)+(x+3)+(x-2)+3(x+3)-1=87. | | -249=18(-2r-14) | | 16=2z+3z | | -230=-16(4k+14)-16k | | 79+5k=-5k+9 | | -10(2q+9)+40q=-88 | | -46=16(-2p-3) | | 3(5)+6b=75 | | 4x(5x+3)=14x+30 | | -g-5+10g=4 | | 3(4)+6b=75 | | 3/5+8z=4 | | -199=19(-4j-11) | | 3(3)+6b=75 | | 3p/5-3=15 | | 3(2)+6b=75 | | 17n+28=12n-27 | | 4x+7x-12=10 | | 5z+9z+–8=20 | | 40=2()x5 | | 3(0)+6b=75 | | 6x+5x-19(x=14) | | 9a-7+2=34 | | 5x+3=4x-13 | | 12+10(-15+w)=15 |