1/36z+18=3z-9

Simple and best practice solution for 1/36z+18=3z-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/36z+18=3z-9 equation:



1/36z+18=3z-9
We move all terms to the left:
1/36z+18-(3z-9)=0
Domain of the equation: 36z!=0
z!=0/36
z!=0
z∈R
We get rid of parentheses
1/36z-3z+9+18=0
We multiply all the terms by the denominator
-3z*36z+9*36z+18*36z+1=0
Wy multiply elements
-108z^2+324z+648z+1=0
We add all the numbers together, and all the variables
-108z^2+972z+1=0
a = -108; b = 972; c = +1;
Δ = b2-4ac
Δ = 9722-4·(-108)·1
Δ = 945216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{945216}=\sqrt{576*1641}=\sqrt{576}*\sqrt{1641}=24\sqrt{1641}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(972)-24\sqrt{1641}}{2*-108}=\frac{-972-24\sqrt{1641}}{-216} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(972)+24\sqrt{1641}}{2*-108}=\frac{-972+24\sqrt{1641}}{-216} $

See similar equations:

| 3*(2x-11)=2x-41 | | 8z+5=3+3z | | .8x^2+6x-11=0 | | x^2-x-2=3 | | 5m=2m-7/3 | | 93=4x+45 | | 4(2x+1)=3x+29 | | 8x+6=108 | | 7/9=1/6+4/3g | | x/4.6=3.7/16.4 | | a=4+12 | | 5−6x=−2x+13 | | 2t3+1=7t/15+3 | | x−8=4−5x | | 15+5x=6x+17 | | 3k÷4=k÷6-14 | | 6x=2x-12= | | 93=4x+65 | | 10x+5=2(x-2)+8 | | 5(2+h)=30 | | (2x+9)(x+9)=0 | | ∑8k=1(−16)k−1 | | 5z+4=3-2z | | -20+4x=46-2x | | 1=1/5+1/2a(1/8100) | | 9z/7-6z=15 | | 15=3t- | | 14x^2+19x^2-3x=0 | | 6x^2+9x-20=0 | | (7/6)(3j+24)=(5/6)j+84* | | 3x/8=60 | | 6x+20=3x+29 |

Equations solver categories