1/314x-6=3/48x+12

Simple and best practice solution for 1/314x-6=3/48x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/314x-6=3/48x+12 equation:



1/314x-6=3/48x+12
We move all terms to the left:
1/314x-6-(3/48x+12)=0
Domain of the equation: 314x!=0
x!=0/314
x!=0
x∈R
Domain of the equation: 48x+12)!=0
x∈R
We get rid of parentheses
1/314x-3/48x-12-6=0
We calculate fractions
48x/15072x^2+(-942x)/15072x^2-12-6=0
We add all the numbers together, and all the variables
48x/15072x^2+(-942x)/15072x^2-18=0
We multiply all the terms by the denominator
48x+(-942x)-18*15072x^2=0
Wy multiply elements
-271296x^2+48x+(-942x)=0
We get rid of parentheses
-271296x^2+48x-942x=0
We add all the numbers together, and all the variables
-271296x^2-894x=0
a = -271296; b = -894; c = 0;
Δ = b2-4ac
Δ = -8942-4·(-271296)·0
Δ = 799236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{799236}=894$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-894)-894}{2*-271296}=\frac{0}{-542592} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-894)+894}{2*-271296}=\frac{1788}{-542592} =-149/45216 $

See similar equations:

| 67=18+x* | | 4x–2=26 | | y+174=200 | | 20+14v=4+20v-14 | | 4x–2+2=26+2 | | y^2+17y+60=0 | | 7u+14=-56 | | 2p+19p-19=18p+17 | | -10m+10+4m+3=31 | | -4x+3=x+(-7) | | 7x+2=2x+(-28) | | 6m-21=-363 | | 6x+7=320 | | 4x+6=2x+-5 | | 16+2m=-19-3m-20 | | 7(n+1)=3+7n | | –2g=–3g+10 | | 16x−11+14x+5=180 | | 140=(25x^2-35x-30)*(4x^2-10x) | | 2n+(-9n)+6n=-6 | | -18+16d=13d+15 | | –9z=9−10z | | p-16=24 | | -13=-4+3f | | 5a-2=3a-10 | | 4x+6=2x+-6 | | p16=24 | | 9+x/2=-12 | | 5t=712 | | -1+2f=-5 | | −3+x-4=2+3x+5−2x | | y=3-2-5 |

Equations solver categories