If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3+1/2p+7=7/6p+5+4
We move all terms to the left:
1/3+1/2p+7-(7/6p+5+4)=0
Domain of the equation: 2p!=0
p!=0/2
p!=0
p∈R
Domain of the equation: 6p+5+4)!=0We add all the numbers together, and all the variables
We move all terms containing p to the left, all other terms to the right
6p+4)!=-5
p∈R
1/2p-(7/6p+9)+7+1/3=0
We get rid of parentheses
1/2p-7/6p-9+7+1/3=0
We calculate fractions
72p^2/108p^2+54p/108p^2+(-126p)/108p^2-9+7=0
We add all the numbers together, and all the variables
72p^2/108p^2+54p/108p^2+(-126p)/108p^2-2=0
We multiply all the terms by the denominator
72p^2+54p+(-126p)-2*108p^2=0
Wy multiply elements
72p^2-216p^2+54p+(-126p)=0
We get rid of parentheses
72p^2-216p^2+54p-126p=0
We add all the numbers together, and all the variables
-144p^2-72p=0
a = -144; b = -72; c = 0;
Δ = b2-4ac
Δ = -722-4·(-144)·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-72}{2*-144}=\frac{0}{-288} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+72}{2*-144}=\frac{144}{-288} =-1/2 $
| 3(-2x-9)=27-3x | | 16x-9=5x | | 2x-2(-1)=-8 | | -246+x=90+15x-2x | | 23x-25=3x+25 | | -46-7f=2(7-2f) | | 2×(x-3)-5x=2 | | 2x+4=7x-62 | | 720=x400 | | 8x-10(-1)=2 | | 2×-5=7x+10 | | 2y=8y-15 | | 41s-14=62s-77 | | -3+2-r=-5r+5 | | 13x^2+12x-2=0 | | Y=0.13+.4x | | x+1+1=8 | | 9x+53=-53 | | 2x7-3=2 | | 5(y+1)=40 | | 2x=x=2 | | -8(1-2x)=-55 | | 5x(-2+x)=-10x+5x^2 | | 7(-9)+3y=-10 | | (6n+4)+4(3-n)=24 | | n-8.5=12.3 | | -7x-8=-8x-10 | | 45=41+x | | 2(3x-8)=32×1/2 | | j/2+3=-2 | | 90+x+3x-10=180 | | 35=x+31 |