1/3(x)-4(2/3X-3)=2/3(X)-6

Simple and best practice solution for 1/3(x)-4(2/3X-3)=2/3(X)-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3(x)-4(2/3X-3)=2/3(X)-6 equation:



1/3(x)-4(2/3x-3)=2/3(x)-6
We move all terms to the left:
1/3(x)-4(2/3x-3)-(2/3(x)-6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x-3)!=0
x∈R
Domain of the equation: 3x-6)!=0
x∈R
We multiply parentheses
1/3x-8x-(2/3x-6)+12=0
We get rid of parentheses
1/3x-8x-2/3x+6+12=0
We multiply all the terms by the denominator
-8x*3x+6*3x+12*3x+1-2=0
We add all the numbers together, and all the variables
-8x*3x+6*3x+12*3x-1=0
Wy multiply elements
-24x^2+18x+36x-1=0
We add all the numbers together, and all the variables
-24x^2+54x-1=0
a = -24; b = 54; c = -1;
Δ = b2-4ac
Δ = 542-4·(-24)·(-1)
Δ = 2820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2820}=\sqrt{4*705}=\sqrt{4}*\sqrt{705}=2\sqrt{705}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{705}}{2*-24}=\frac{-54-2\sqrt{705}}{-48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{705}}{2*-24}=\frac{-54+2\sqrt{705}}{-48} $

See similar equations:

| 3/2t=9/1 | | r−333=457 | | 51/2x=22 | | 213+148=116+x | | z2+ 12=14 | | m6=6 | | 5-2v-7=-11+7v | | 32=h−44 | | 35=w+-54 | | 89-k=81 | | 3x+1/8=1/2 | | 17p=578 | | 36=-4f | | 327-121=463-x | | 4x-25)=(2x-1) | | 11c=924 | | -3•w+7=-14 | | 6(2×+4)=3x-(4-2x) | | -225=25r | | 6(2x−3)=42 | | (x-16)/4=16 | | -1=k-75 | | j+2/3=-143/3 | | 1/3x-1/2x=10 | | 97-31=x-85 | | -9•p=44+2p | | -1=k−75 | | 18=-6(4r-3) | | 76+82=x+105 | | h+32=71 | | -3n-6-3=-1-5n | | -1/4x+2=1/8x+1 |

Equations solver categories