If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3(21x+24)-19=-1/2(12x-10)
We move all terms to the left:
1/3(21x+24)-19-(-1/2(12x-10))=0
Domain of the equation: 3(21x+24)!=0
x∈R
Domain of the equation: 2(12x-10))!=0We calculate fractions
x∈R
(2x1/(3(21x+24)*2(12x-10)))+(-(-3x2)/(3(21x+24)*2(12x-10)))-19=0
We calculate terms in parentheses: +(2x1/(3(21x+24)*2(12x-10))), so:
2x1/(3(21x+24)*2(12x-10))
We multiply all the terms by the denominator
2x1
We add all the numbers together, and all the variables
2x
Back to the equation:
+(2x)
We calculate terms in parentheses: +(-(-3x2)/(3(21x+24)*2(12x-10))), so:determiningTheFunctionDomain 3x^2+2x-19=0
-(-3x2)/(3(21x+24)*2(12x-10))
We add all the numbers together, and all the variables
-(-3x^2)/(3(21x+24)*2(12x-10))
We multiply all the terms by the denominator
-(-3x^2)
We get rid of parentheses
3x^2
Back to the equation:
+(3x^2)
a = 3; b = 2; c = -19;
Δ = b2-4ac
Δ = 22-4·3·(-19)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{58}}{2*3}=\frac{-2-2\sqrt{58}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{58}}{2*3}=\frac{-2+2\sqrt{58}}{6} $
| 3x^2-12x+17=53 | | -0.55x+0.35x=4.6 | | F(t)=0,5+3t-5t^2 | | 38-10j=10+4j | | 0.25x−11/6=21/3 | | .333(2x-7)=4 | | _13(2x-7)=4 | | -4x^2+126x-574=0 | | 54x+30-2=12x-42 | | (2x-1)*(2x+1)=323 | | t^2+28t+196=0 | | 14-3•a=26 | | 3-7C=8c-2 | | 2x+2*1/3x=40 | | 2(x+1/3x)=40 | | 3(x-4)-8=5x-30 | | -5x-24=26 | | X+0.0725x×6=119387.5 | | 4(2x-3)=-6x-5 | | 60+2x=100 | | 3x-2(5x+7)=4x+8 | | 5p-3=2p-12 | | -4(2x+5)=-8x+5 | | w/2+1/2=w/3-1/3 | | 3+4x=4+x | | 6x-1=16-41 | | .12=1710/x | | 5y²+20y+20=0 | | 4n+2=6/3n-12/3 | | 9a+28=5a | | (2w-9)(w)=10 | | 186=5h |