1/3(12z)=6z

Simple and best practice solution for 1/3(12z)=6z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3(12z)=6z equation:



1/3(12z)=6z
We move all terms to the left:
1/3(12z)-(6z)=0
Domain of the equation: 312z!=0
z!=0/312
z!=0
z∈R
We add all the numbers together, and all the variables
-6z+1/312z=0
We multiply all the terms by the denominator
-6z*312z+1=0
Wy multiply elements
-1872z^2+1=0
a = -1872; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1872)·1
Δ = 7488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7488}=\sqrt{576*13}=\sqrt{576}*\sqrt{13}=24\sqrt{13}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{13}}{2*-1872}=\frac{0-24\sqrt{13}}{-3744} =-\frac{24\sqrt{13}}{-3744} =-\frac{\sqrt{13}}{-156} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{13}}{2*-1872}=\frac{0+24\sqrt{13}}{-3744} =\frac{24\sqrt{13}}{-3744} =\frac{\sqrt{13}}{-156} $

See similar equations:

| 17/3=u/5 | | 50=x+50 | | 7=2v-11 | | y=1-(5)+3 | | 4(x-5)+5=25 | | -39=u/5 | | d/4+3=1 | | -w/8=37 | | 2+3x+6x=38 | | 2+3x6x=38 | | 7k/8-¾-5k/16=3/8 | | 7k/8-¾-5k/16=⅜ | | 7/12=v/9 | | 7x+9+7x=177 | | 3x^2-33x-38=0 | | u/9=11/8 | | 3^(x+6)=72 | | x-(.05x)=25000 | | 180-5x+5x=180 | | 2x-6x-4=-2(x-2) | | 2(x-4)=2x+3 | | 6x−3=32x | | 2x-6x-4=-2 | | 4m+6=4 | | 4(x+1)=9(x-2)+7 | | 2(-5+7x)=32 | | 2n-12=46 | | k/5-5=6 | | 3x^2-8=93 | | 5x+3+158=180 | | 5+118=3+2x | | 3x+8-5+7x=20x-15+8+4x |

Equations solver categories