If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3(12x+27)-4=-1/4(24x-28)
We move all terms to the left:
1/3(12x+27)-4-(-1/4(24x-28))=0
Domain of the equation: 3(12x+27)!=0
x∈R
Domain of the equation: 4(24x-28))!=0We calculate fractions
x∈R
(4x2/(3(12x+27)*4(24x-28)))+(-(-3x1)/(3(12x+27)*4(24x-28)))-4=0
We calculate terms in parentheses: +(4x2/(3(12x+27)*4(24x-28))), so:
4x2/(3(12x+27)*4(24x-28))
We multiply all the terms by the denominator
4x2
We add all the numbers together, and all the variables
4x^2
Back to the equation:
+(4x^2)
We calculate terms in parentheses: +(-(-3x1)/(3(12x+27)*4(24x-28))), so:a = 4; b = 3; c = -4;
-(-3x1)/(3(12x+27)*4(24x-28))
We add all the numbers together, and all the variables
-(-3x)/(3(12x+27)*4(24x-28))
We multiply all the terms by the denominator
-(-3x)
We get rid of parentheses
3x
Back to the equation:
+(3x)
Δ = b2-4ac
Δ = 32-4·4·(-4)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{73}}{2*4}=\frac{-3-\sqrt{73}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{73}}{2*4}=\frac{-3+\sqrt{73}}{8} $
| 7+1.25t=45.23 | | 8*5+8*(1-2*6)+6-2*2-1=x | | -16-3g=-2g | | n/7=3/21 | | -7+2q=7 | | 5/y=15/20 | | -24+6h=-7(9h+2) | | (8*(5+8)*1)-(2(6+6)-2(2-1))=x | | (8*5+8*1)-(2(6+6)-2*(2-1))=x | | (8*5+8*1)-(2*(6+6)-2*2-1)=x | | 7+4p=-13 | | (8*5+8*1)-(2*6+6-2*2-1)=x | | 1/3(x+5)=-1/2 | | 44/64=x/100 | | 8*5+8*1-2*6+6-2*2-1=x | | -8n-3+2=20 | | 15-2x=4x+3 | | n/12=30/24 | | x+.05x=252 | | 5y=3y-5/4 | | p+8=14/1 | | 7d-8d=-19 | | 6/4=12/z | | -17=-136/x | | 16=-2c+34 | | (A+10)+j50=100 | | 8d+32=-64 | | -17=-136y | | -7p^2+8p+32=8 | | 0.8x=259 | | -4(8-v)=-35+3v | | 9+9x=12+8x |