1/2y-31/30=2/5y-1

Simple and best practice solution for 1/2y-31/30=2/5y-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2y-31/30=2/5y-1 equation:



1/2y-31/30=2/5y-1
We move all terms to the left:
1/2y-31/30-(2/5y-1)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
Domain of the equation: 5y-1)!=0
y∈R
We get rid of parentheses
1/2y-2/5y+1-31/30=0
We calculate fractions
(-1550y^2)/900y^2+450y/900y^2+(-360y)/900y^2+1=0
We multiply all the terms by the denominator
(-1550y^2)+450y+(-360y)+1*900y^2=0
Wy multiply elements
(-1550y^2)+900y^2+450y+(-360y)=0
We get rid of parentheses
-1550y^2+900y^2+450y-360y=0
We add all the numbers together, and all the variables
-650y^2+90y=0
a = -650; b = 90; c = 0;
Δ = b2-4ac
Δ = 902-4·(-650)·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8100}=90$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90}{2*-650}=\frac{-180}{-1300} =9/65 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90}{2*-650}=\frac{0}{-1300} =0 $

See similar equations:

| 6+1-2x+5x=x-1 | | -(6/7)x+6=0 | | -(6/7x)+6=0 | | 3x+14=2(x+14) | | 2f+3=2-3(f=3) | | 3/4y+5=20 | | 3x+14=2x+14 | | 9t7/3t+5=3t-4/t+6 | | |7-x|=5x+1 | | 12/v=8/5 | | 8(6x-5)=2 | | 9x-2(x-5)=5(x+6) | | 6x^2-10x+171=0 | | 2x-4+x-4=46 | | y=2+1/6 | | 2(3.5)+6y=20 | | 21x^2+16x-22=0 | | 0.06-0.01(x+3)=-0.04(3-x) | | 23x+46=7(3x+6)+2x+4 | | -4(3t-2)+5t=6t-9 | | -5(7x-2)+5=-35x+15 | | 5x+4=-5+2x+21 | | 1x+1=-1x+1 | | 5x+13=2x+34 | | 45+2x=7x+10 | | 45+2x=7x+1 | | 36+2x=6+5x | | 16/x=x/14 | | 21=45-4x | | 29-5x=9 | | 23+3x=44 | | 3(4x)=0 |

Equations solver categories