1/2x2+7=43

Simple and best practice solution for 1/2x2+7=43 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x2+7=43 equation:



1/2x^2+7=43
We move all terms to the left:
1/2x^2+7-(43)=0
Domain of the equation: 2x^2!=0
x^2!=0/2
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x^2-36=0
We multiply all the terms by the denominator
-36*2x^2+1=0
Wy multiply elements
-72x^2+1=0
a = -72; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-72)·1
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*-72}=\frac{0-12\sqrt{2}}{-144} =-\frac{12\sqrt{2}}{-144} =-\frac{\sqrt{2}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*-72}=\frac{0+12\sqrt{2}}{-144} =\frac{12\sqrt{2}}{-144} =\frac{\sqrt{2}}{-12} $

See similar equations:

| 1x+1=-5x+25 | | y=1*0-4 | | -2x-5=-1x+3 | | 4/9=m/45 | | 11x+9+3x-4=131 | | (x+2)^(2)=-20 | | 3x+5+2x+1=31 | | -(z+-3)=-3 | | 5x-30=4x+9 | | 10x–16=2x+8 | | u+8=9 | | 1,115+x=459 | | 6−m=5m+30 | | 2b+8b=16+6b+2b | | 7x-23-10x=(x+1) | | 3=t(t^2-5t-8) | | 13-x=x+4+x | | y=1*0+2 | | x+10/9=-1 | | 1+0.35x=2.8 | | 4(-2+3m)=12m | | n/12=40 | | (9x-3)=(7x+19 | | 15d+–19d=4 | | 8v-3v=5v-8 | | 180=48+2x-44 | | 24r+8=-4(3+6r) | | x-8/4=-5 | | 5x-2=2(x-1)=3x-4 | | 2x-(7x+12)=4x+15 | | 4b=9b=45 | | 42=35+v |

Equations solver categories