1/2x-9=1/5x+9

Simple and best practice solution for 1/2x-9=1/5x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-9=1/5x+9 equation:



1/2x-9=1/5x+9
We move all terms to the left:
1/2x-9-(1/5x+9)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+9)!=0
x∈R
We get rid of parentheses
1/2x-1/5x-9-9=0
We calculate fractions
5x/10x^2+(-2x)/10x^2-9-9=0
We add all the numbers together, and all the variables
5x/10x^2+(-2x)/10x^2-18=0
We multiply all the terms by the denominator
5x+(-2x)-18*10x^2=0
Wy multiply elements
-180x^2+5x+(-2x)=0
We get rid of parentheses
-180x^2+5x-2x=0
We add all the numbers together, and all the variables
-180x^2+3x=0
a = -180; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-180)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-180}=\frac{-6}{-360} =1/60 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-180}=\frac{0}{-360} =0 $

See similar equations:

| 8(2x+3)=7x+6 | | 3-5h=-12 | | 37=8p-19 | | 1/2a-1=1/4a+3/4 | | 9+n=72 | | 45+5x+2x=115 | | 2x2/2+9=3/2 | | 5a=-40a | | -18=6(w-7)-2w | | 3x+28=7x+13 | | −9−3x=27 | | 7=3(5+r) | | 2x^2+28x-190=0 | | 10.00+0.75x=15.00+0.50x | | 30=12+9p | | 4/6=x/150 | | 9w+18=90 | | -9+9f=8ff= | | 0.023+x=0.069 | | 6v−–17=95 | | 4(x+3)−6=10 | | 180-45+2x=x | | -9g-5=-10gg= | | 2g-26=68 | | -4(p-213)=44 | | -2x+8=3x+-6 | | 3(3x-6)=181 | | 5(3x–2)=5(4x+1) | | 2g−26=68 | | 2x-12=-3-x | | -4q-10=-5qq= | | 16x+2=24x-14 |

Equations solver categories