1/2x-6=1/7x+4

Simple and best practice solution for 1/2x-6=1/7x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-6=1/7x+4 equation:



1/2x-6=1/7x+4
We move all terms to the left:
1/2x-6-(1/7x+4)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 7x+4)!=0
x∈R
We get rid of parentheses
1/2x-1/7x-4-6=0
We calculate fractions
7x/14x^2+(-2x)/14x^2-4-6=0
We add all the numbers together, and all the variables
7x/14x^2+(-2x)/14x^2-10=0
We multiply all the terms by the denominator
7x+(-2x)-10*14x^2=0
Wy multiply elements
-140x^2+7x+(-2x)=0
We get rid of parentheses
-140x^2+7x-2x=0
We add all the numbers together, and all the variables
-140x^2+5x=0
a = -140; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-140)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-140}=\frac{-10}{-280} =1/28 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-140}=\frac{0}{-280} =0 $

See similar equations:

| 75+11x+2=180 | | 75+11x+2=90 | | 4x-8=9-6× | | 8(8x-5)=65x | | -23/4(b+4/3)=-55/6 | | |1/8x-9|=8 | | 126=1/2•12h | | 3(x+9)+4=3x+9 | | 10x-10x5x(-3)x=6 | | 17n-9n-7n=14 | | -1+11x=11x-1 | | -a+7=3 | | 2x-10+90+90+3x+10=360 | | 4q+19=5/6 | | 55x2-11x=0 | | 7a+3+(2a–2)=4 | | H(t)=210 | | 14−5x=−36 | | 3/4y-2=-7/8y+3 | | 6x-2(x-3=4(x+1)+4 | | 2(x-5)+2=6x-4(2+x) | | 142+4x+6=180 | | 3(2c-3)-4=4c+7 | | 2(5n-1)+3=5(2n+5) | | 4x=1=31 | | -12+2x=2x-12 | | 5(3x-3)=-120 | | y+(3y-180)=100 | | 7(5a-4)-1=4 | | 142+2x+8=180 | | 5.2+k=9.2 | | -8(m-7)=88 |

Equations solver categories