1/2x-4=1/7x+1

Simple and best practice solution for 1/2x-4=1/7x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-4=1/7x+1 equation:



1/2x-4=1/7x+1
We move all terms to the left:
1/2x-4-(1/7x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 7x+1)!=0
x∈R
We get rid of parentheses
1/2x-1/7x-1-4=0
We calculate fractions
7x/14x^2+(-2x)/14x^2-1-4=0
We add all the numbers together, and all the variables
7x/14x^2+(-2x)/14x^2-5=0
We multiply all the terms by the denominator
7x+(-2x)-5*14x^2=0
Wy multiply elements
-70x^2+7x+(-2x)=0
We get rid of parentheses
-70x^2+7x-2x=0
We add all the numbers together, and all the variables
-70x^2+5x=0
a = -70; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-70)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-70}=\frac{-10}{-140} =1/14 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-70}=\frac{0}{-140} =0 $

See similar equations:

| y/9-1=-2 | | 24x-62=21+2•3 | | 3x-2+68=180 | | 5(3x+9)-2x+15x-2(x-5)=8 | | 8x-13+4x-1=44 | | 2a−1=9 | | 8=3+5e | | 3x-12=2x-(6-x) | | -13j-3j=16 | | |v+2|=7 | | 1-43=x | | 12x-(5x-6)=34 | | 7x-1=4x+13 | | 180=3x+7x+5x | | 8.5–3z=–8z | | 10y-30-15=8y+20 | | 7x+21=-42 | | 2(2x+2)+x=5 | | 24x-62=6•3 | | 8y-28=-4 | | 6(x−1)=2(3+3x) | | 4+-2x=16 | | 3(x-4)=-2((4-x) | | 8y-28=4 | | 9x+7=14x-23 | | 4=-1/6y | | -14.9=-2.4+x/5 | | 10r+15=-5 | | x*25=3-x | | 2x+8=+3x+38 | | b(10-4)=2b(6-10)+4b | | 10r+15=5 |

Equations solver categories