1/2x-3=2/5x+9

Simple and best practice solution for 1/2x-3=2/5x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-3=2/5x+9 equation:



1/2x-3=2/5x+9
We move all terms to the left:
1/2x-3-(2/5x+9)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+9)!=0
x∈R
We get rid of parentheses
1/2x-2/5x-9-3=0
We calculate fractions
5x/10x^2+(-4x)/10x^2-9-3=0
We add all the numbers together, and all the variables
5x/10x^2+(-4x)/10x^2-12=0
We multiply all the terms by the denominator
5x+(-4x)-12*10x^2=0
Wy multiply elements
-120x^2+5x+(-4x)=0
We get rid of parentheses
-120x^2+5x-4x=0
We add all the numbers together, and all the variables
-120x^2+x=0
a = -120; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-120)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-120}=\frac{-2}{-240} =1/120 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-120}=\frac{0}{-240} =0 $

See similar equations:

| 250+0.3c=200+0.8c | | 7x-19=5x+2=7x-2= | | 30+4x=130 | | (3.4x+1.7+2.6)=180 | | 255m+75=1605 | | 2x+7=7+11 | | m/7=7.4 | | 1.2(4x-12)+3x=6x+1 | | 273=-8(6k+8)+1 | | 3x+1=1x-3 | | 2k-5+5k+18=90 | | 50+12b=14 | | -12y=-4 | | (12x+9)+7x=180 | | 4+2.2h=-3.7* | | (2x+13)+(5x+13)=180 | | 12x−14x−16−21=3 | | -6(x+4)=-2(x-6) | | 8x+10+7x=180 | | 4b=152 | | 2|x|-10=-8 | | 8g+3-10g=2(g-2)+3 | | 7x-5=2x+115 | | -3(3s-5)-15=-2(7s+11)-2 | | a-2a5=3 | | 12x+7=3(x-4) | | 5+5(1-5x)=-190 | | 24=2(8+w) | | -4u+24=7u-9 | | -3/2=2/3v-5/7 | | 5.3+w=10.1 | | -x²-4x+21=0 |

Equations solver categories