1/2x-10+3/2x=x+3

Simple and best practice solution for 1/2x-10+3/2x=x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-10+3/2x=x+3 equation:



1/2x-10+3/2x=x+3
We move all terms to the left:
1/2x-10+3/2x-(x+3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
1/2x+3/2x-x-3-10=0
We multiply all the terms by the denominator
-x*2x-3*2x-10*2x+1+3=0
We add all the numbers together, and all the variables
-x*2x-3*2x-10*2x+4=0
Wy multiply elements
-2x^2-6x-20x+4=0
We add all the numbers together, and all the variables
-2x^2-26x+4=0
a = -2; b = -26; c = +4;
Δ = b2-4ac
Δ = -262-4·(-2)·4
Δ = 708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{708}=\sqrt{4*177}=\sqrt{4}*\sqrt{177}=2\sqrt{177}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{177}}{2*-2}=\frac{26-2\sqrt{177}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{177}}{2*-2}=\frac{26+2\sqrt{177}}{-4} $

See similar equations:

| 9+4x=10x-15 | | f-6=15 | | 18-n=40 | | 1x/11=6 | | r-93=-72 | | 4z=7z-3 | | 5x=35x=175 | | -37+y=-4 | | 5x-3=(6x+4) | | −4=x−5+6 | | q-6=5 | | 5b+3=96-17 | | b/8-1=10 | | 2(3x+7)-4=70 | | 5x-3(6x+4)=x | | 8-7d=9d+8 | | m=+1=9 | | -x(x+4)+5=4x+1-5x | | 3n-5n-4=-3n-n | | 1/2t+3=3/4t-2 | | -5x+7(-5)=35 | | v+5.9=7.03 | | 2x+12=2(x+8)-4 | | -11+r-3+6=4r-2r | | -16+v=-15 | | 2(-2a-7)=6a+16 | | 2x-2/3=1/6 | | 7(3x-5)-18=25 | | 3(x-3)=5(2x+2) | | 7a-16=61 | | 12t-19=14t+2 | | 3x-7=-14+4x |

Equations solver categories