1/2x+x+(x-5)=180

Simple and best practice solution for 1/2x+x+(x-5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x+(x-5)=180 equation:



1/2x+x+(x-5)=180
We move all terms to the left:
1/2x+x+(x-5)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
x+1/2x+(x-5)-180=0
We get rid of parentheses
x+1/2x+x-5-180=0
We multiply all the terms by the denominator
x*2x+x*2x-5*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2-10x-360x+1=0
We add all the numbers together, and all the variables
4x^2-370x+1=0
a = 4; b = -370; c = +1;
Δ = b2-4ac
Δ = -3702-4·4·1
Δ = 136884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136884}=\sqrt{4*34221}=\sqrt{4}*\sqrt{34221}=2\sqrt{34221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-370)-2\sqrt{34221}}{2*4}=\frac{370-2\sqrt{34221}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-370)+2\sqrt{34221}}{2*4}=\frac{370+2\sqrt{34221}}{8} $

See similar equations:

| -2x+4(x+8)=26 | | 3.8n-13=4n+5 | | 8(v-2)+8v=16 | | Y=2-4x= | | 3y+2+2y+6=9y-12 | | 6+x3=−20 | | -9x=-18=-63 | | 9x=-18=-63 | | 9y+2+3y+7=16y-11 | | 3x+2=14-7x | | X-0.85x=78 | | 97=21x | | 4(x-2=(5x-20) | | 8x-11=3x-26 | | 5r−r−9=15 | | (10/3x+2)+(3/5)=3(3x+2)+4 | | X=(4y-10)+(2y+10) | | 0.25x+3=0.15x+5 | | 4x-1=74 | | -4(a+6)-3(7a-8)=-2a-5a | | 6x-2=5x/3 | | 4/7x-2=10 | | 2.5x-3=4.5x-4 | | 3x3/8=X1/8 | | -8-3=8x+9-7x | | -8-3=8x+9-6x | | 2.5x-3=4.5x-2 | | 4(x-2)+3x=4x+3(x-1) | | 0.50x+38.34=100 | | w-15=-4w= | | 6+6x=16x-4 | | −3x=12 |

Equations solver categories