1/2x+3(1/3x+5)=45

Simple and best practice solution for 1/2x+3(1/3x+5)=45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+3(1/3x+5)=45 equation:



1/2x+3(1/3x+5)=45
We move all terms to the left:
1/2x+3(1/3x+5)-(45)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x+5)!=0
x∈R
We multiply parentheses
1/2x+3x+15-45=0
We multiply all the terms by the denominator
3x*2x+15*2x-45*2x+1=0
Wy multiply elements
6x^2+30x-90x+1=0
We add all the numbers together, and all the variables
6x^2-60x+1=0
a = 6; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·6·1
Δ = 3576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3576}=\sqrt{4*894}=\sqrt{4}*\sqrt{894}=2\sqrt{894}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-2\sqrt{894}}{2*6}=\frac{60-2\sqrt{894}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+2\sqrt{894}}{2*6}=\frac{60+2\sqrt{894}}{12} $

See similar equations:

| (-5)(x^2)+24x+36=0 | | 45=1/2x+3(1/3x+5) | | 5.6b=1/7/8 | | 6*x-12=18 | | 3(3x-30)+2x=540 | | 2(x-4)=x+x+8 | | (42)/(51)=(x)/(100) | | 5.6b=1(7/8) | | 10=z+1)6 | | 10n^2+3n-1=0 | | 11=p/17 | | 4x-13+2x=3+6x-16 | | (7x-5)4=-20 | | 15h+8=4+19h | | 12b-60-2b=0 | | x+8=-3x-4. | | 1+4r=7r-11 | | -2(3x+9)=-6 | | 4=29(4y−2) | | -3(3m+4)=6 | | 7(5x-7)=-35x-49 | | 146=-4x+35+50 | | -3(4x-2)=2(3x-1)=18 | | 3x+13=-56 | | -2,3x=26,3 | | 3(2x-4)+4(x+2=36 | | 5x+20+4x=110 | | n/24=9 | | 36x^2-3=13 | | 25-16-3=2x+3x-11x | | 10(2x+3)=70 | | (x+4)=2(x+5)+x |

Equations solver categories