1/2x+15+(2x-50)=90

Simple and best practice solution for 1/2x+15+(2x-50)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+15+(2x-50)=90 equation:



1/2x+15+(2x-50)=90
We move all terms to the left:
1/2x+15+(2x-50)-(90)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x+(2x-50)-75=0
We get rid of parentheses
1/2x+2x-50-75=0
We multiply all the terms by the denominator
2x*2x-50*2x-75*2x+1=0
Wy multiply elements
4x^2-100x-150x+1=0
We add all the numbers together, and all the variables
4x^2-250x+1=0
a = 4; b = -250; c = +1;
Δ = b2-4ac
Δ = -2502-4·4·1
Δ = 62484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{62484}=\sqrt{4*15621}=\sqrt{4}*\sqrt{15621}=2\sqrt{15621}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-250)-2\sqrt{15621}}{2*4}=\frac{250-2\sqrt{15621}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-250)+2\sqrt{15621}}{2*4}=\frac{250+2\sqrt{15621}}{8} $

See similar equations:

| -6=3(x-7) | | 100=50+2x | | (3x/2)-1=8 | | -1x=1x-4 | | 5(2+3y)=+y | | 2x^2-36x-255=0 | | 2x+0=8x+(-3) | | 3x-72+x+5+x-3=180 | | (4x+30)=94 | | p÷2+7p÷3=153 | | 3(4y-7)=7 | | 48=4(-4x+4) | | 2x-77=49-5x | | -9x-24=-11x+34 | | -45+x=105-5x | | 8=-9x+17 | | 12z-9=3z+123 | | 2x-105=40+7x | | -13=4+r | | 30d^2-20d-10=0 | | 5(x+4)=3*(x-3)+5 | | 15x-24=1/2x+5 | | -48-12x=62-7x | | 3(0.5)+2y=3 | | 4x-12+52=18 | | 4x+-12+52=180 | | -4+3a=7(a+4)-8 | | m/7=9/7 | | -2/3(m+6)=10 | | 3x=4x-8/5 | | x/2+98=100 | | 124=62/x |

Equations solver categories