1/2x+10=1/4x+45

Simple and best practice solution for 1/2x+10=1/4x+45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+10=1/4x+45 equation:



1/2x+10=1/4x+45
We move all terms to the left:
1/2x+10-(1/4x+45)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+45)!=0
x∈R
We get rid of parentheses
1/2x-1/4x-45+10=0
We calculate fractions
4x/8x^2+(-2x)/8x^2-45+10=0
We add all the numbers together, and all the variables
4x/8x^2+(-2x)/8x^2-35=0
We multiply all the terms by the denominator
4x+(-2x)-35*8x^2=0
Wy multiply elements
-280x^2+4x+(-2x)=0
We get rid of parentheses
-280x^2+4x-2x=0
We add all the numbers together, and all the variables
-280x^2+2x=0
a = -280; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-280)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-280}=\frac{-4}{-560} =1/140 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-280}=\frac{0}{-560} =0 $

See similar equations:

| 5(r+7)-1=-11 | | X=29x+94 | | 5x-3+4x+8+146=180 | | 33x-3=66 | | Xt5=10 | | 7(w+4)=-4(3w-4)+3w | | -8+k/3=-11 | | -20+a=62 | | 30=2x-16 | | 8=24-8t | | 2-5(h+3)=(-28) | | -6w+4(w+5)=22 | | 2(n-3)=-36 | | 5(c-3)=-10 | | 374849+74387724s/76445=93 | | -8g+4=68 | | 3(b+10)=103.83 | | 18x+42=26x+2 | | 3x(8)=4x(6) | | 1/2-14=h(-4) | | 3x-33=66 | | d-47=-8.3 | | 9k+1=4k+-1+5k | | 2x+4=-5÷x | | 8m+20=100 | | p3+1=19 | | w-58/5=5 | | 9x−2=8x+7 | | -3(2x-8)=+4x-18 | | -2xX-6=-¼xX | | x+40=3x+-17=2x+-5 | | 34x-2=4x-32 |

Equations solver categories