1/2x+1/2x+x-15+100+x-25=540

Simple and best practice solution for 1/2x+1/2x+x-15+100+x-25=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+1/2x+x-15+100+x-25=540 equation:



1/2x+1/2x+x-15+100+x-25=540
We move all terms to the left:
1/2x+1/2x+x-15+100+x-25-(540)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+1/2x-480=0
We multiply all the terms by the denominator
2x*2x-480*2x+1+1=0
We add all the numbers together, and all the variables
2x*2x-480*2x+2=0
Wy multiply elements
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $

See similar equations:

| Y=-x+8=x-2 | | 1/10y+6=-12 | | 4n-1=2n-25 | | x^-4-6x^-2-16=0 | | h+1/2=10 | | 15x-2(10x-4)=3 | | 6+4t-1=9t+11-4t | | 0.12(y-6)+0.14y=0.02y-0.03(30) | | |8k-5|=4k-23 | | 5.1/2x-2=2x | | 3+1/3x=36 | | m/9=-2 | | 100+8s=160+5s | | p+1/6=611 | | 51/2x-2=2x | | 3/4m+10=10 | | 5d+d=4-d | | 100+8s=160 | | 3=q/6 | | m/9=(-2) | | r/2.7=3.2/3.6 | | 8-|7y-9|=3 | | 18x=2x+36 | | 7=10-l | | 5(-3+m)=5m-18 | | 4/5=1/2+f | | z*z=49/4 | | u+74,u=2 | | 2x+1=2x-6 | | m+4=6 | | 2(b+3=4b-2 | | 4(4x+2)=21x+5-5x+3 |

Equations solver categories