If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+1/2x+100+(x-15)+(x-25)=540
We move all terms to the left:
1/2x+1/2x+100+(x-15)+(x-25)-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+1/2x+(x-15)+(x-25)-440=0
We get rid of parentheses
1/2x+1/2x+x+x-15-25-440=0
We multiply all the terms by the denominator
x*2x+x*2x-15*2x-25*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-15*2x-25*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2-30x-50x-880x+2=0
We add all the numbers together, and all the variables
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $
| -38+3x=18-x | | 4x-1=9x-14 | | 25t^2=0 | | 8-2=-3x+1 | | 2(7s+9)-8s=2(3s+2)-9 | | R-52=207r | | -7+6n=10n+3n | | 3x-30=-4+7x+6 | | 4x+8=2x16 | | 5(-1-2p)=20+5p | | 14+19+x=17/3 | | -6m=32 | | 8(a-3)=5a-30 | | 2-3g=6 | | 2x-13=-4x+29 | | -10x+15x+5=5+4x+3 | | 3y+8-y=8+y=9 | | 5c+8=7c-2 | | -10+4x=3+5x | | -3x+2=2x+14 | | x8=2 | | X(.15)+x=20000 | | x+3x(x-20)=180° | | 4(2×3)=3+8x11 | | -12-7m=-3(m+8) | | -04w=4.2 | | 8x-(3x+4)=7x-18 | | 5x-20=-5x-2x | | 48=2l+11 | | 7x+5=10x-3= | | 3x1000=3x | | 12+2x=-30+5x |