1/2x+(x-9)=180

Simple and best practice solution for 1/2x+(x-9)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+(x-9)=180 equation:



1/2x+(x-9)=180
We move all terms to the left:
1/2x+(x-9)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
1/2x+x-9-180=0
We multiply all the terms by the denominator
x*2x-9*2x-180*2x+1=0
Wy multiply elements
2x^2-18x-360x+1=0
We add all the numbers together, and all the variables
2x^2-378x+1=0
a = 2; b = -378; c = +1;
Δ = b2-4ac
Δ = -3782-4·2·1
Δ = 142876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{142876}=\sqrt{4*35719}=\sqrt{4}*\sqrt{35719}=2\sqrt{35719}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-378)-2\sqrt{35719}}{2*2}=\frac{378-2\sqrt{35719}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-378)+2\sqrt{35719}}{2*2}=\frac{378+2\sqrt{35719}}{4} $

See similar equations:

| .07x+.08(10,000-x)=560 | | 9x-15=7x+1 | | y2-545y+14000=0 | | X=15x-(7.5+550) | | .04x+.08(10,000-x)=270 | | -18y=-237 | | 4z=12,6 | | 30x-295=20x-169,5 | | (x)(9.5)+(x+37.4)(9.5)=589 | | -3y=2-16/5 | | x2+250x-36500=0 | | 0=10x^2-20x-1200 | | -.4x+.5=-.6 | | P(x)=15x-(7.5+550) | | F(x)=x(75-x) | | 5x+210=140 | | 10x-43,9=20X-169,5 | | 3(x+5)+6=-3x+6(x+8) | | 2(a-1)-5(a+1)=-1 | | 1+3=4m | | 216^x=6^x+10 | | P=15x-(7.5+550) | | y/3-8=6 | | 4(x+5)-3(x+3)=12 | | 51=4x+11 | | 3=v/2-12 | | 7x-(3x+5)=1/2(8x+20)-7x+5 | | 4(x+5)-3(+3)=12 | | x/2+5=4x-7 | | 3-2x=8-7× | | 4(x+5)−3(x+3)=12 | | -3x+3=5x-4 |

Equations solver categories