If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+(x-15)+100+(x+25)+1/2x=540
We move all terms to the left:
1/2x+(x-15)+100+(x+25)+1/2x-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+(x-15)+(x+25)+1/2x-440=0
We get rid of parentheses
1/2x+x+x+1/2x-15+25-440=0
We multiply all the terms by the denominator
x*2x+x*2x-15*2x+25*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-15*2x+25*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2-30x+50x-880x+2=0
We add all the numbers together, and all the variables
4x^2-860x+2=0
a = 4; b = -860; c = +2;
Δ = b2-4ac
Δ = -8602-4·4·2
Δ = 739568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{739568}=\sqrt{16*46223}=\sqrt{16}*\sqrt{46223}=4\sqrt{46223}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-860)-4\sqrt{46223}}{2*4}=\frac{860-4\sqrt{46223}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-860)+4\sqrt{46223}}{2*4}=\frac{860+4\sqrt{46223}}{8} $
| 43+x=109 | | (5x+6)=2x+1) | | -3=12y-5(2y)-7) | | 100+0.60x=20+0.80x | | 2x(x-3)=10x^2-13x | | 3w-5÷2=w+2 | | 3(x-7)-46=8x-5(x-9) | | 9y-8=10-4y | | f(3(-1))=(-2(3)-1+3) | | 2x(x-2)=9x(x-1) | | 90+.60x=60+.80x | | m+1/2=m-3/3 | | (5x+6)=(2x+1)=(9x+3) | | u/4-9=29 | | 15/4=x/6 | | 29=v/5+15 | | 2x+20=7x-10=90 | | n÷9=107 | | 9a^2+20a-21=0 | | 3.7(8.3r-7.5)=54.8 | | 3(4x−2)=2(5x+3) | | x=1/2(7+14)9 | | -8/10x=-56 | | 8/10x=56 | | (y/4)+5y=1/5 | | -5x+7(2x-5)=-23-3x | | (x/4)+5x=1/5 | | x/4+5x=1/5 | | 2x-10-9=-19 | | 48=20+x+21 | | 39+x=15+3x | | x-84.5=10.5 |