If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2r+6/4r-2=1/4r+6
We move all terms to the left:
1/2r+6/4r-2-(1/4r+6)=0
Domain of the equation: 2r!=0
r!=0/2
r!=0
r∈R
Domain of the equation: 4r!=0
r!=0/4
r!=0
r∈R
Domain of the equation: 4r+6)!=0We get rid of parentheses
r∈R
1/2r+6/4r-1/4r-6-2=0
We calculate fractions
4r/8r^2+(-2r+6)/8r^2-6-2=0
We add all the numbers together, and all the variables
4r/8r^2+(-2r+6)/8r^2-8=0
We multiply all the terms by the denominator
4r+(-2r+6)-8*8r^2=0
Wy multiply elements
-64r^2+4r+(-2r+6)=0
We get rid of parentheses
-64r^2+4r-2r+6=0
We add all the numbers together, and all the variables
-64r^2+2r+6=0
a = -64; b = 2; c = +6;
Δ = b2-4ac
Δ = 22-4·(-64)·6
Δ = 1540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1540}=\sqrt{4*385}=\sqrt{4}*\sqrt{385}=2\sqrt{385}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{385}}{2*-64}=\frac{-2-2\sqrt{385}}{-128} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{385}}{2*-64}=\frac{-2+2\sqrt{385}}{-128} $
| 13h-8h-4h=5 | | 8h=9=89 | | 3+-2(b+-2)=2+-7b | | x/2-3=57 | | 5p-7=(2p+12) | | -25-20a=-23-8a | | 4^(2x)=2560 | | a÷3-5=10 | | 14t-t+10t=9 | | (2x)+(x+36)=90 | | 14t-t+-10t=9 | | 2y+8=9y-7 | | 4n+5n=6n-7 | | 5w-3w-6w+15w+9w=-20 | | 8n-2n+10=3+6 | | (x+24)+(3x)=180 | | 4n=40/11 | | 5x+2=11-4× | | -20-12X=-30-7x | | 18=-6/11x | | 7-8y=-1 | | 200m-125m+43875=4500-150m | | 10=1+w= | | 39=6b | | -5w−-3w−-6w+-15w+-9w=-20 | | 5/9=1/3-1/6u | | 4-7x=-8x-4+2 | | 52+n=27n | | -5x-x+7=6+2 | | 3x+(-4x)+20=2 | | x+.05x=1000 | | 17x=87 |