1/2q+2q+10=-4q-4+1

Simple and best practice solution for 1/2q+2q+10=-4q-4+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2q+2q+10=-4q-4+1 equation:



1/2q+2q+10=-4q-4+1
We move all terms to the left:
1/2q+2q+10-(-4q-4+1)=0
Domain of the equation: 2q!=0
q!=0/2
q!=0
q∈R
We add all the numbers together, and all the variables
1/2q+2q-(-4q-3)+10=0
We add all the numbers together, and all the variables
2q+1/2q-(-4q-3)+10=0
We get rid of parentheses
2q+1/2q+4q+3+10=0
We multiply all the terms by the denominator
2q*2q+4q*2q+3*2q+10*2q+1=0
Wy multiply elements
4q^2+8q^2+6q+20q+1=0
We add all the numbers together, and all the variables
12q^2+26q+1=0
a = 12; b = 26; c = +1;
Δ = b2-4ac
Δ = 262-4·12·1
Δ = 628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{628}=\sqrt{4*157}=\sqrt{4}*\sqrt{157}=2\sqrt{157}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{157}}{2*12}=\frac{-26-2\sqrt{157}}{24} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{157}}{2*12}=\frac{-26+2\sqrt{157}}{24} $

See similar equations:

| 40d=180 | | 1.95(6.2-3x)-4.81=-18.412 | | 6w-36=-6(w-6) | | 5(x-6=2(x+3) | | 4x-3=x+48 | | 5(x-6=2(x=3) | | 4y-10=53 | | 12-2x=15-7 | | (12,10)(-2,r)=-4 | | 10+2y=34 | | 2q+392=890 | | 10m^2-3m-7=-6 | | 8x^2=-8x | | 49+2x=6x+× | | 5n^2=-140-55n | | 49+2×=6x+52 | | -16x^2+96x-2=0 | | 2x=-1x-7 | | 5x+20=x-16 | | x–3=-12. | | 2500=2w-250 | | (x+2)(x+12)=x^+168 | | (x-4)^2=26 | | 175m-100m+48500=50750-175m | | F(x)=3x^2-6x-8 | | 8(4k-4)=5k-32+27k | | 18=w-73 | | 8(4k-4)=5k-32+27 | | 2×+5-7x=15 | | (x+2)(x+12)=(x)(x)+168 | | 7/12x-5=22/3 | | 5z=-6z+9 |

Equations solver categories