If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2n+3=47n+3
We move all terms to the left:
1/2n+3-(47n+3)=0
Domain of the equation: 2n!=0We get rid of parentheses
n!=0/2
n!=0
n∈R
1/2n-47n-3+3=0
We multiply all the terms by the denominator
-47n*2n-3*2n+3*2n+1=0
Wy multiply elements
-94n^2-6n+6n+1=0
We add all the numbers together, and all the variables
-94n^2+1=0
a = -94; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-94)·1
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{94}}{2*-94}=\frac{0-2\sqrt{94}}{-188} =-\frac{2\sqrt{94}}{-188} =-\frac{\sqrt{94}}{-94} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{94}}{2*-94}=\frac{0+2\sqrt{94}}{-188} =\frac{2\sqrt{94}}{-188} =\frac{\sqrt{94}}{-94} $
| x/4=8=18 | | x/2+17=12 | | 8^2=(x)(x+x) | | 7p=-3p+10 | | 6/16=45/x | | 4x^2+16x-600=0 | | 82=48x | | 82=58x | | Q=-3p+10 | | 2x^2-32=10 | | 24^3=w+2×w×3 | | 5w^2=-8w | | 0.2x-0.03=6.17x+0.21 | | 5x÷6=-1 | | -1=5x÷6 | | 2x+8=(x-5)*8 | | 7y−5=2y+35 | | -5t^2+7t+1=0 | | -62/3m=11/9 | | 4+2p+6=0 | | 8x=26+6x | | x−15=14 | | 5t^2=12t+9 | | 1/2(3x+3/4)=3/4 | | 6x-5(-8x)=22 | | 18=-2(m-6) | | 0.05y+.10(500-y)=0.20y | | x+8=−9 | | -2(b+5=12 | | (x+3)^2=18 | | -3x-5(-3x)=6 | | 24x-3=36 |