1/2n*7=n+14/2

Simple and best practice solution for 1/2n*7=n+14/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2n*7=n+14/2 equation:



1/2n*7=n+14/2
We move all terms to the left:
1/2n*7-(n+14/2)=0
Domain of the equation: 2n*7!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
1/2n*7-(n+7)=0
We get rid of parentheses
1/2n*7-n-7=0
We multiply all the terms by the denominator
-n*2n*7-7*2n*7+1=0
Wy multiply elements
-14n^2*7-98n*7+1=0
Wy multiply elements
-98n^2-686n+1=0
a = -98; b = -686; c = +1;
Δ = b2-4ac
Δ = -6862-4·(-98)·1
Δ = 470988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{470988}=\sqrt{1764*267}=\sqrt{1764}*\sqrt{267}=42\sqrt{267}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-686)-42\sqrt{267}}{2*-98}=\frac{686-42\sqrt{267}}{-196} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-686)+42\sqrt{267}}{2*-98}=\frac{686+42\sqrt{267}}{-196} $

See similar equations:

| 32.5=4.3r+16+r | | 8x+18=3x-7 | | 138=-6(1-3m) | | -4d+12d+-7d-4d+-12=12 | | 20=0.0052s(0.0052s)+0.13s | | 12t+(-20t)-(-13t)+(-13)=17 | | 110=-5(2n-8) | | (2/9)x-4=2/3 | | x/2-x+5/7=5 | | 46c=120 | | 46c=121 | | 7x+7=12x-2 | | 2x-5=11` | | 8r-3r-3r=16 | | 3x=×(7×x) | | x-42=-6x+7 | | 40=4x-7.5 | | 4x-36=36+4/3x | | -104=8(2n=6)-8n | | -8+3(v-3)=-17+3v | | 3x+5=2x+8=123 | | 6y-12y+20y-13y=-16 | | 2(9-4y)-5y=-12 | | 3.3-4y=-1 | | 5.4x+2500=29.16+50x | | -7r+11r+-17r+r+11r=15 | | x×5=53178 | | 2x+9=5x+13 | | +2x+10=14 | | 10^z=100000000000 | | 6(6m+8)=-204 | | x+5=53178 |

Equations solver categories